Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains.

نویسندگان

  • Rhona K Stuart
  • Chris L Dupont
  • D Aaron Johnson
  • Ian T Paulsen
  • Brian Palenik
چکیده

Copper appears to be influencing the distribution and abundance of phytoplankton in marine environments, and cyanobacteria are thought to be the most sensitive of the phytoplankton groups to copper toxicity. By using growth assays of phylogenetically divergent clades, we found that coastal strains of marine Synechococcus species were more tolerant to copper shock than open-ocean strains. The global transcriptional response to two levels of copper shock were determined for both a coastal strain and an open-ocean strain of marine Synechococcus species using whole-genome expression microarrays. Both strains showed an osmoregulatory-like response, perhaps as a result of increasing membrane permeability. This could have implications for marine carbon cycling if copper shock leads to dissolved organic carbon leakage in Synechococcus species. The two strains additionally showed a common reduction in levels of photosynthesis-related gene transcripts. Contrastingly, the open-ocean strain showed a general stress response, whereas the coastal strain exhibited a more specifically oxidative or heavy-metal acclimation response that may be conferring tolerance. In addition, the coastal strain activated more regulatory elements and transporters, many of which are not conserved in other marine Synechococcus strains and may have been acquired by horizontal gene transfer. Thus, tolerance to copper shock in some marine Synechococcus strains may in part be a result of a generally increased ability to sense and respond in a more stress-specific manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species

Marine microorganisms, particularly those residing in coastal areas, may come in contact with any number of chemicals of environmental or xenobiotic origin. The sensitivity and response of marine cyanobacteria to such chemicals is, at present, poorly understood. We have looked at the transcriptional response of well characterized Synechococcus open ocean (WH8102) and coastal (CC9311) isolates t...

متن کامل

Ni uptake and limitation in marine Synechococcus strains.

Ni accumulation and utilization were studied in two strains of marine Synechococcus, isolated from both coastal (CC9311; clade I) and open-ocean (WH8102; clade III) environments, for which complete genome sequences are available. Both strains have genes encoding an Ni-containing urease and when grown on urea without Ni become Ni-N colimited. The Ni requirements of these strains also depend upon...

متن کامل

A Synechococcus serotype is found preferentially in surface marine waters

In marine ecosystems, gradients of light, temperature, and nutrients occur horizontally (coastal to offshore) and vertically. The extent to which microorganisms acclimate or speciate in response to these gradients is under active investigation. Strain isolation data (e.g., site or depth), environmental DNA clone libraries, and preliminary physiology experiments have indicated that marine Synech...

متن کامل

Divergent responses of Atlantic coastal and oceanic Synechococcus to iron limitation.

Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regi...

متن کامل

Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation

Phosphate (P) is an important nutrient potentially limiting for primary productivity, yet, we currently know little about the relationship between growth rate and physiological response to P limitation in abundant marine Cyanobacteria. Thus, the aim of this research was to determine how variation in growth rate affected the physiology of marine Synechococcus WH8102 and CC9311 when growing under...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 15  شماره 

صفحات  -

تاریخ انتشار 2009